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APPENDIX E:
HUYGHENS-FRAUNHOFER-KIRCHHOFF

APPROXIMATION

We shall use the WKB (eikonal) approximation up to
the exit surface of the lens, but construct a solution of the
wave equation which is better than the WKB expression
in the space beyond the lens. This requires input of just
the WKB values for U and ∇U values at the exit surface
of the lens. The solution beyond the lens is provided by
Green’s theorem:

U(x) =
1
4π

∫
Σ0

dΣ0·[U(x0)∇0G(x,x0)−G(x,x0)∇0U(x0)].

(E1)
In what follows, it is helpful to use symbols illustrated
in Fig. (19), although the details associated with this
particular lens are not needed. In Eq. (E1), x = r is
the observation point beyond the lens. x0 = −Lk̂ + r1

represents a point on Σ0, the exit surface of the lens. (It
also includes the screen, but on it U and ∇U are taken
to vanish). dΣ0 = dΣ0n̂ is the surface element of the
lens, whose normal n̂ points radially outward from it.
G(x,x0) is the Green’s function for the vacuum, given
by Eq. (C13) with r = |x − x0| ≡ D. It satisfies the
wave equation with a point source (Eq. (C1), with n = 1
and with the argument of the delta function changed to
D). Thus, Eq. (E1) describes U as a continuous sum
(integral) of solutions of the wave equation so, of course,
it is a solution of the wave equation.

FIG. 19: Ray geometry for a ball lens

Eq. (E1) can be simplified. From (C13),

∇0G = −GD̂[ik −D−1] ≈ −GD̂ik,

where the approximation is valid for D >> λ. From
(C12),

∇0U(x0) = ikG(x0)∇0Φ(x0) ≈ ikG(x0)v̂0,

where the approximation replaces Φ by Φ0 (since Φ1 is
quite constant over the lens exit surface) and uses (C4).

Thus, (E1) becomes:

U(x) =
−ik

4π

∫
Σ0

dΣ0U(x0)
1
D

eikD(x,x0)n̂ · [v̂0 + D̂].

We are interested in the solution for large L, on the image
plane far from the lens. There, D−1 varies slowly, and
may be taken out of the integral.

As shown at the end of section (B 7), the outgoing ray
from the lens surface satisfies is almost parallel to the
z-axis (the optic axis), i.e., v̂0 ≈ k̂. (For a perfect lens,
v̂0 = k̂ since then the source point is imaged at∞.) Sim-
ilarly, D̂ ≈ k̂ since the intensity at x we wish to explore is
not very much off-axis. The normal to the exit lens sur-
face is not parallel to k̂, but dΣ0 · k̂ = dΣ0n̂ · k̂ = dA0,
where dA0 is the surface element of S0, the plane tan-
gent to the exit surface of the lens at the point where
it intersects the optic axis and perpendicular to the op-
tic axis (the “tangent plane”). Therefore, the surface
integral can be converted from being over the exit sur-
face of the lens to being over the tangent plane. With
U(x0) ∼ exp ikΦ0(x0) given by the WKB approxima-
tion, the approximate solution to be evaluated is

U(x) ∼
∫

S0

dA0e
ik[Φ0(x0)+|x−x0|]. (E2)

Eq. (E2) is what we need hereafter. Since we are only
interested in relative values of |U(x)|2, constant factors
may be dropped or chosen at pleasure.

It is worth re-emphasis, that Φ0(x0) in Eq. (E2) is
the optical path length (C9), from the source to the exit
surface of the lens, at height r0 above the optic axis.
It is not the optical path length from the source to the
tangent plane whose surface area element is integrated
over in Eq. (E2).

APPENDIX F: POINT SPREAD FUNCTION
AND CONSEQUENCES

1. The Diffraction Integral

To integrate (E2), we need D = |x− x0|. Again, refer
to Fig.(19). The origin of the coordinate system is on
the optic axis, a large distance L away from the exit
surface of the lens. D makes a small angle β with respect
to the optic axis, and its horizontal component extends
a small distance ζL beyond the origin. Therefore, the
observation point is

x = r = îLβ + k̂Lζ.

The point on the surface of the lens is

x0 = îr0 cos φ + ĵr0 sinφ− k̂[L + σ]

where φ is the azimuthal angle in the tangent plane and

σ = R−
√

R2 − r2
0 ≈

r2
0

2R2
+

r4
0

8R3
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is the “sagitta,” the horizontal distance between the sur-
face of the lens and the tangent plane, at height r0 above
the optic axis. With D = [(x− x0)2]1/2, dropping terms
of order L−1, we obtain:

eikD = eikL{1+(1/2)[β2−ζ+ 1
2 ζ2]}eik[−βr0 cos φ+(−ζ+1)σ],

and (E2) becomes

U(β) ∼
∫ b

0
r0dr0

∫ 2π

0
dφeik[Φ0(x0)−βr0 cos φ+(1−ζ)σ],

(F1)
where b is the radius of the exit pupil.

The purpose of section F 4 is to show that the optical
path length from the source point to the exit surface of
the lens at distance r0 from the optic axis is

Φ0 = 3.5R− r2
0

2R
− 37R

216

[r0

R

]4
= 3.5R− σ − R

21.6

[r0

R

]4
.

(F2)
Suppose a ray exits the lens at at distance r0 from the
optic axis in a direction almost parallel to k̂, and travels
the distance σ further to the tangent plane. As Eq. (F2)
shows, it still has to travel a bit further than that to
achieve the same optical path from source to tangent
plane as the axial ray (r0 = 0), whose optical path is
(R/2) + n2R = 3.5R. Thus, the wavefront is slightly
converging.

With change of variable to ρ ≡ r0/b and

b̄ ≡ b/R, σ̄(ρ) ≡ (b̄ρ)2

2
+

(b̄ρ)4

8
,

Eq. (F1) becomes

U(β) ∼
∫ 1

0
ρdρ

∫ 2π

0
dφe

−ikR

[
ρ4 b̄4

21.6+ρβb̄ cos φ+ζσ̄(ρ)

]
.

(F3)
The integral over φ is readily performed:

U(β) ∼
∫ 1

0
ρdρe

−ikR

[
ρ4 b̄4

21.6+ζσ̄(ρ)

]
J0(kRρβb̄), (F4)

where J0 is the Bessel function.
We note that if we choose the observation plane to be

ζ = 0 and neglect the exponent (a good approximation
for sufficiently small exit pupil radius b), the result can
be integrated using the identity d[xJ1(cx)]/dx = cxJ0(x),
with resulting intensity

IA(kbβ) ∼ |U(β)|2 ∼
[

2J1(kbβ)
kbβ

]2

. (F5)

IA(kbβ) is the well known and important Airy point
spread function of a circular perfect lens or aperture, dis-
cussed in Section III H and illustrated in Fig.11.

The exponent in (F4) is responsible for spherical aber-
ration. In geometrical optics, this is caused by the rays

at the outer edge of a lens coming to a focus on the optic
axis closer to the lens than the paraxial ray focus. In our
calculation, this is represented by the converging wave-
front. As a result, as one moves a plane along the optic
axis, one sees a circle of light of varying radius. One tries
to choose the best effective focal plane, the plane where
there is the “circle of least confusion” or the plane where
the on-axis intensity is largest. The value of the present
discussion is that it gives the intensity of the combined
diffraction and spherical aberration, something not given
by geometrical optics.

In order to slickly choose the best plane of focus, one
needs to introduce a complication, We express the expo-
nent in (F4) in terms of orthogonal Zernike polynomials
(designed just for this purpose!), R2n(ρ) ≡ Pn(2ρ2 − 1),
where the Pn are the Legendre polynomials. The first
three, which we shall need, are R0 = 1, R2 = 2ρ2 − 1,
R4 = 6ρ4−6ρ2+1. They obey the orthogonality relations∫ 1
0 ρdρR2nR2m = δnm(4n+2)−1. They also obey the neat

relation
∫ 1
0 ρdρR2n(ρ)J0(cρ) = (−1)nJ2n+1(c)/c.

In terms of these polynomials, (F4) becomes

U(β) = ∼
∫ 1

0
ρdρe

−ikR

[
R4b̄4

(
1

130+ ζ
48

)
+R2b̄2 1

4 (ζ+ 6b̄2
65 )

]
×J0(kRρβb̄). (F6)

(In obtaining (F6), we have set ζ[1 + b̄2/4] ≈ ζ, a few
percent error).

It is apparent that one can choose ζ so that the R2

term vanishes. Moreover, this is essentially the plane
of largest intensity on the optic axis (β = 0). Upon
setting J0(0) = 1 in Eq.(F6), expanding the exponential
to second order, and using the orthogonality relations,
the result is

|U(0)|2 =
∣∣∣2 ∫ 1

0
ρdρe−i[pR4+qR2]

∣∣∣2 = 1− p2

5
− q2

3
.

Since dp2/dζ << dq2/dζ the intensity is maximized to
a high degree of accuracy by setting ζ = −6b̄2/65 and
thus making the q2 term vanish. This best focus plane
is closer to the lens, consistent with the spherical aberra-
tion effect. When this value is put into the first term, it
becomes R4b̄4[1 + b̄2/4]/130 ≈ R4b̄4/130, using the same
approximation already made.

2. The Point Spread Function

Defining

β̄ ≡ kRβb̄, B̄ ≡ kRb̄4/130, (F7)

we arrive finally at the amplitude which combines diffrac-
tion and spherical aberration,

U(β̄) ∼ √2
∫ 1

0
ρdρeiB̄R4(ρ)J0(ρβ̄). (F8)
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Fig. (20) contains plots of I(r), the intensity of light
due to a point source imaged by the lens on the image
plane, i.e., the point spread function,

I(r) =
√

B̄|U(kbr/f)|2, (F9)

for various exit pupil radii b, for our 1mm diameter lens.
r is the distance from the optic axis. (F7) has been used
(with β = r/f , as discussed at the end of the introduction
to this Appendix), with λ = .55µm, and f = (3/2)R =
.75mm.

The reason for the factor
√

2 in Eq. (F8) and the factor√
B̄ in Eq. (F9) are as follows.
Using the Fourier-Bessel relation∫ ∞

0
β̄dβ̄J0(ρβ̄)J0(ρ′β̄) = ρ−1δ(ρ− ρ′),

because of the factor
√

2 in (F8), an integral proportional
to the total energy emerging from the lens (proportional
to the intensity integrated over the area of the image
plane) is conveniently normalized to 1:∫ ∞

0
β̄dβ̄|U(β̄)|2 = 2

∫ 1

0
ρdρ = 1

(the maximum β̄ allowed by our limitation sinβ ≈ β, is
large enough to allow the integral to be extended to ∞
with good accuracy).

FIG. 20: Point spread functions I(r) for b = .16µm (B̄ = .5),
b = .19µm (B̄ = 1), b = .23µm (B̄ = 2), b = .29µm (B̄ = 5).

However, the total energy emerging from the lens
should be proportional to the exit pupil area, ∼ b2. Since√

B̄ ∼ b2 (see (F7)), this factor is included in the defini-
tion (F9) of the point spread function.

It is useful to have an approximate analytic expression
for the point spread function, at least for small values of
B̄. Expansion of (F8) to second order in B̄ gives

U(β̄) ∼ √2
∫ 1

0
ρdρ[1− iB̄R4 − 1

2
(B̄R4)2]J0(ρβ̄).

A little algebra shows that R2
4 = (18/35)R8 + (2/7)R4 +

(1/5) so, dropping the R8 term,

U(β̄) ∼ √
2

{[
1− B̄2

10

]
J1(β̄)

β̄
− B̄2

7
J5(β̄)

β̄
− iB̄

J5(β̄)
β̄

}
.

Thus, to second order in B̄ (neglecting the small ∼ J1J5)
term), the point spread function is, approximately,

I(r)/
√

B̄ ∼ 1
2

(
2J1(β̄)

β̄

)2(
1− B̄2

5

)
+

B̄2

2

(
2J5(β̄)

β̄

)2

(F10)

The normalized total energy is still 1 in this approxima-
tion:∫ ∞

0
β̄dβ̄I(r)/

√
B̄ =

1
2

{
2

(
1− B̄2

5

)
+ B̄2 2

5

}
= 1.

Eq. (F10) shows that, for small B̄ (small b), the point
spread function is essentially the Airy function. As B̄
grows, the amplitude of the Airy function decreases, with
concomitant growth of a fifth order Bessel function con-
tribution which vanishes for r = 0, and whose oscillations
are displaced to larger r values than the oscillations of the
Airy function.

Eq. (F10) has good accuracy for B̄ = 1: it is ≈ 2.5%
low at β̄ = 0, improving to negligible inaccuracy at β̄ = 1
and beyond. (For B̄ = 1.3 and 1.5, these percentages are
6% and 12% at β̄ = 0, with negligible inaccuracy beyond
β̄ = 2.5, 3 respectively.)

3. The Exit Pupil

These results may be used to choose the optimum exit
pupil radius b for our lens.

As can be seen from Fig. (20), as b is increased from a
small value, the intensity on the optic axis r = 0 initially
grows, because the exit pupil is allowing more light to
exit the lens. For small values of b (B̄ < 1), the intensity
distribution (F10) is essentially ∼ IA(β̄), the Airy func-
tion, variously given in (F5) or Eq. (3), and illustrated
in Fig.11 and the B̄ = .5 curve in Fig. (20). The Airy
radius for our lens is, from Eq. (4),

rA = .61
λ

b/f
=

.50
b̄

µm. (F11)
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b/f is called the lens “numerical aperture.”
For the Airy function, ≈84% of the light energy lies

within the Airy disc. But, as b increases further, spher-
ical aberration kicks in, the intensity on the optic axis
starts to diminish and a greater percentage of light en-
ergy appears beyond rA. For the values b =.16, .19, .23
and .29µm, used in Fig. (20), Eq. (F11) gives rA =1.56,
1.3, 1.1 and .86µm respectively. The first two curves ap-
pear to reach 0 at these values of rA, whereas the last
two curves deviate somewhat.

One wants b to be as large as possible, to decrease rA

and thus increase resolution, and to let as much light
as possible exit the lens. However, as b grows, spherical
aberration grows, as seen in Fig. (20): I(r) decreases for
r < rA and more light appears for r > rA, so resolution
decreases. A rule of thumb, called the Strehl criterion,
suggests increasing b until the maximum intensity, the
intensity on the optic axis I(0), is reduced to 80% of
the maximum intensity on the optic axis without any
spherical aberration. Then, the image is considered still
diffraction limited, i.e., the image is still essentially the
Airy disc. From (F9), we see I(0) ≈ 1/2[1 − (B̄)2/5].
Thus, the Strehl criterion implies B̄ = 1. It does seem
from Fig. (20) that this is an optimal choice.

For B̄ = 1, the wavefront (the surface of constant
phase), for a ray exiting the lens a distance ≡ ρb above
the optic axis, goes beyond the tangent plane by the
distance Rρ4b̄4/21.6 = ρ46B̄/k ≈ λρ4, according to
Eq.(F4). Thus, the wavefront at the edge of the exit
pupil, ρ = 1, is about a wavelength in front of the tan-
gent plane. For B̄ > 1, images are available[85] show-
ing appreciable spherical aberration, for path differences
from 1.4λρ4 to 17.5λρ4.

4. Optical Path Calculation

The unfinished business remains of showing that the
optical path length, of a ray emerging from the source at
the lens focal length, passing through the lens and up to
its exit surface, is given by Eq. (F2). For the following
discussion, refer to Fig. (21). The focal length of the
lens, according to Eq. (4), is f = nR/2(n − 1) = 1.5R
for n = 1.5. Thus, the point source at a is at a distance
R/2 to the left of the lens surface. We shall follow a ray
which leaves the source at angle α to the optic axis.

A simplifying feature, which occurs only for n = 1.5,
is that the angle of refraction cde also happens to be α.
That can be seen as follows. The angle of incidence θ
and the angle of refraction θ′ are related by Snell’s law,
sin θ = n sin θ′. By the law of sines applied to the triangle
adc, sinα/R = sin(π− θ)/f , or sin θ = (f/R) sinα. This
is the same as Snell’s law provided f = nR, which is only
true for n=1.5.

The axial ray, α = 0, obviously has optical path length
(R/2) + n2R = 3.5R. For arbitrary α, the optical path
length Φ0 is ad+nde or, as can readily be seen from

FIG. 21: Optical path length geometry

Fig.(21),

Φ0 =
R sin(θ − α)

sin(α)
+ (1.5)2R cos α

= 4.5R cos α−R cos θ

= 4.5R cos α−R
√

1− (1.5 sinα)2

≈ R[3.5− (9/8)α2 + (57/128)α4 + ....] (F12)

The approximation (F12) is good to about 1% at α =
.6 ≈ 34◦. We want to express Φ0 in terms of the distance
r0 between the optic axis and the exit point e. In terms
of α, r0 is

r0 = R sin(3α− θ)

= R sin 3α
√

1− (1.5 sinα)2 −R1.5 cos 3α sinα

≈ R[1.5α− (7/8)α3 + ...].

This equation can be inverted,

α = R−1[(2/3)r0 + (14/81)r3
0 + ...]

and inserted into Eq. (F12), with the result (F2).
It was mentioned earlier that the angle γ the exiting

ray makes with the horizontal is quite small. Here is the
argument. From Fig. (21), γ = 2θ−3α. From Snell’s law,
θ − θ3/6 ≈ (3/2)[α − α3/6], or θ ≈ (3/2)α + (5/16)α3,
so γ ≈ (5/8)α3. Thus, the horizontal distance σ from
e to the tangent plane differs from the actual distance
σ[1 + (1/2)γ2] by a negligibly small amount.

APPENDIX G: EXTENDED OBJECT

Having treated the image of a point source, we shall
now consider the image of a uniformly illuminated hole
of radius a. The hole models a transparent object such as
a spherosome or a polystyrene sphere. We shall suppose


